Set No - 1

I B. Tech I Semester Regular/Supplementary Examinations Nov./Dec. - 2015 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE, Agri.E)

Time: 3 hours Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B**Answering the question in **Part-A** is Compulsory,
Three Questions should be answered from **Part-B**

PART-A

1. (a) Evaluate $\sqrt{24}$ to four decimal places by Newton's iterative method.

(b) Prove that $\sum_{k=0}^{n-1} \Delta^2 f_k = \Delta f_n - \Delta f_0.$

(c) Solve by Euler's method, $y' = x - y^2$, y(0) = 1, find y(0.2) taking step size h = 0.1.

(d) Find the half range Fourier cosine series for $f(x) = x^2$ in $0 < x < \pi$.

(e) If F(p) is the complex Fourier transform of f(x), then show that

$$F[f(x)\cos ax] = \frac{1}{2}[F(p+a) + F(p-a)].$$

(f) State left shifting theorem in Z - transform.

[4+4+3+4+4+3]

PART-B

2. (a) Find the root of $x \sin x + \cos x = 0$ using Newton-Raphson method.

(b) Using Lagrange's formula, fit a polynomial to the data and find the value of f(1), given that

X	-2	-1	2	7
f(x)	-1	0	4	11

[8+8]

3. (a) Find a real root of $x \tan x + 1 = 0$ using False position method.

(b) Find y(66) given that y(50) = 201, y(60) = 225, y(70) = 248 and y(80) = 274. Using Newton's backward difference formula.

[8+8]

4. (a) Tabulate y(0.1), y(0.2) and y(0.3) using Picard's method given that $y^1 = y^2 + x$, y(0)=1.

(b) Find the Fourier series of xsinx for $0 < x < 2\pi$.

[8+8]

5. (a) Evaluate y(0.6) using Runge Kutta method given $y' = (x+y)^{1/2}$, y(0.4) = 0.41.

(b) Expand $\sin \pi x$ in (0,1) as Fourier cosine series.

[8+8]

Set No - 1

- 6. (a) Find the Fourier transform of $f(x) = \begin{cases} 1 x^2, & \text{if } |x| \le 1 \\ 0, & \text{if } |x| > 1 \end{cases}$.
 - (b) If $\frac{3z^2 4z + 7}{(z-1)^3}$ is the z-transform of f(n), find f(0), f(1), f(2).

[8+8]

- 7. (a) Find the solution of the difference equation $y(n+2)-2y(n+1)+y(n)=2^n$, y(0)=2, y(1)=1.
 - (b) Find the finite Fourier cosine transform of the function $f(x) = \left(1 \frac{x}{\pi}\right)^2$ in $0 < x < \pi$. [8+8]

Set No - 2

I B. Tech I Semester Regular/Supplementary Examinations Nov./Dec. - 2015 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE, Agri.E)

Time: 3 hours Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

1. (a) Evaluate $\sqrt{42}$ to four decimal places by Newton's iterative method.

(b) Prove that $1 + \frac{1}{4}\delta^2 = \mu^2$.

(c) Solve the equation, $y' = x - y^2$, y(0) = 1, find y(0.2) using Taylor's series method.

(d) Find the half range Fourier sine series for $f(x) = x^2$ in 0 < x < 2.

(e) If $F_s(p)$ is the complex Fourier Sine transform of f(x), then show that

$$F_{S}[f(x)\cos ax] = \frac{1}{2}[F_{S}(p+a) + F_{S}(p-a)].$$

(f) State Final value theorem in Z - transform.

[4+3+4+4+4]

PART-B

2. (a) Find a real root of $x^4 - x - 9 = 0$ using false position method.

(b) Using Lagrange's formula, fit a polynomial to the data and find the value of f(1), given that

X	-1	0	2	3
f(x)	-12	-8	6	11

[8+8]

3. (a) Find a real root of $x \tan x + 1 = 0$ using Newton Raphson method.

(b) Find y(54) given that y(50) = 201, y(60) = 225, y(70) = 248 and y(80) = 274. Using Newton's forward difference formula.

[8+8]

4. (a) Tabulate y(0.1), y(0.2) and y(0.3) using Taylor's series method given that $y' = y^2 + x$, y(0) = 1.

(b) Find the Fourier series of xcosx for $0 < x < 2\pi$.

[8+8]

5. (a) Evaluate y(0.8) using Runge Kutta method given $y' = (x+y)^{1/2}$, y(0.4) = 0.41.

(b) Expand $\cos \pi x$ in (0,1) as Fourier sine series.

[8+8]

Page 1 of 2

USHA RAMA COLLEGE OF ENGINEERING & TECHNOLOGY

Subject Code: R13107/R13

Set No - 2

- 6. (a) Find the Fourier transform of $e^{-\frac{x^2}{2}}$, $-\infty < x < \infty$.
 - (b) Find inverse Z transform of $\frac{z}{z^3 7z^2 + 14z 8}$.

[8+8]

7. (a) Find the solution of the difference equation $y(n+2)-5y(n+1)+6y(n)=5^n$,

y(0)=0, y(1)=0.

(b) Find the finite Fourier sine and cosine transform of the function f(x)=2x in $0 < x < 2\pi$.

[8+8]

Set No - 3

I B. Tech I Semester Regular/Supplementary Examinations Nov./Dec. - 2015 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE, Agri.E)

Time: 3 hours Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

- 1. (a) Evaluate $\sqrt{26}$ to four decimal places by Newton's iterative method.
 - (b) Prove that $1 + \mu^2 \delta^2 = \left(1 + \frac{\delta^2}{2}\right)^2$.
 - (c) Solve the equation, y' = xy + 1, y(0) = 1, find y(0.2) using Taylor's series method.
 - (d) Find the half range Fourier cosine series for $f(x) = x^2$ in 0 < x < 3.
 - (e) If $F_S(p)$ and $F_C(p)$ are the complex Fourier sine and cosine transforms of f(x) respectively, then show that $F_C[f(x)\sin ax] = \frac{1}{2}[F_S(p+a) F_S(p-a)]$.
 - (f) State Right shifting theorem in Z transform.

[4+3+4+4+4]

PART-B

- 2. (a) Find the root of $x\sin x + \cos x = 0$ using Regula Falsi method.
 - (b) Using Lagrange's formula, fit a polynomial to the data and find the value of f(14), given that

X	12	13	15	19
f(x)	11	15	18	31

[8+8]

- 3. (a) Find a root correct to three decimal places of the equation $x^4 x 13 = 0$ using Newton's iterative method.
 - (b) The population of a nation in the decimal census was given below. Estimate the population in the year 1925 using appropriate interpolation formula

Year x	1891	1901	1911	1921	1931
Population y (thousands)	46	66	81	93	101

[8+8]

- 4. (a) Solve $y^1 = 2x y$ and y(1) = 3 by modified Euler's method and compute y(1.1).
 - (b) Find the Fourier series of $f(x) = \begin{cases} x & 0 \le x \le -\pi \\ 2\pi x & -\pi \le x \le \pi \end{cases}$. Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{8}$. [8+8]

Page 1 of 2

Set No - 3

- 5. (a) Find the Fourier series of xsinx for $0 < x < 2\pi$.
 - (b) Using Runge-Kutta fourth order formula, Find y(0.2) for the equation $y^1 = \frac{y-x}{y+x}$ y(0) = 1 taking h=0.1.

[8+8]

- 6. (a) Find the Fourier sine and cosine transform of $f(x) = \frac{1}{1+x^2}$.
 - (b) Find inverse Z-transform of $\frac{8z-z^3}{(4-z)^3}$.

[8+8]

- 7. (a) Find the solution of the difference equation $y(n+2)-6.y(n+1)+9.y(n) = 3^n$. y(0)=0, y(1)=1.
 - (b) Find the inverse Fourier cosine transform of $\frac{\sin ap}{p}$.

[8+8]

Set No - 4

Max. Marks: 70

I B. Tech I Semester Regular/Supplementary Examinations Nov./Dec. - 2015 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE, Agri.E)

Time: 3 hours

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

- 1. (a) Evaluate $\sqrt{45}$ to four decimal places by Newton's iterative method.
 - (b) Prove that $\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{\delta^2}{4}}$.
 - (c) Solve the equation, y' = xy + 1, y(0) = 1, find y(0.2) using Euler's method taking h = 0.1.
 - (d) Find the half range Fourier sine series for $f(x) = x^2$ in $0 < x < \pi$.
 - (e) If $F_S(p)$ and $F_C(p)$ are the complex Fourier sine and cosine transforms of f(x) respectively, then show that $F_S[f(x)\sin ax] = \frac{1}{2}[F_C(p-a) F_C(p+a)]$.
 - (f) Evaluate $Z(3^{2n+8})$.

[4+3+4+4+4]

PART-B

- 2. (a) Find a real root of $x^2 log_x e = 12$ using Regula falsi method.
 - (b) Using Lagrange's formula, fit a polynomial to the data and find the value of f(10), given that

X	2	5	9	15
f(x)	11	15	18	31

[8+8]

- 3. (a) Find a real root of the equation by Newton Raphson method for: $e^x-x^3+\cos 25x$ correct to three decimal places.
 - (b) The population of a nation in the decimal census was given below. Estimate the population in the year 1905 using appropriate interpolation formula

Year x	1891	1901	1911	1921	1931
Population y (thousands)	46	66	81	93	101

[8+8]

- 4. (a) Solve $y^1 = x y^2$, y(0) = 1 using Taylor's series method and compute y(0.1), y(0.2)
 - (b) Find the Fourier series for the function $f(x) = x^2 x$ in $(-\pi, \pi)$. Hence deduce that

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} \dots = \frac{\pi^2}{6}.$$

[8+8]

Set No - 4

- 5. (a) Find y(0.1), y(0.2) using Runge-Kutta fourth order formula given that $y^1 = x + x^2y$, y(0) = 1.
 - (b) Expand $f(x) = (x-1)^2$ as half range sine series in (0, 1).

[8+8]

- 6. (a) Find the Fourier transform of $f(x) = \frac{1}{\sqrt{|x|}}$.
 - (b) Find inverse Z-transform of $\frac{8z-z^3}{(4-z)^3}$.

[8+8]

- 7. (a) Find the solution of the difference equation $y(n+2)+5y(n+1)+4y(n)=2^n$, y(0)=1, y(1)=-4.
 - (b) Find the inverse Fourier cosine transform of $p^n e^{-ap}$.

[8+8]